A Conservative Quasi-Monotone Semi-Lagrangian Scheme
نویسندگان
چکیده
منابع مشابه
Conservative semi-Lagrangian schemes for Vlasov equations
Conservative methods for the numerical solution of the Vlasov equation are developed in the context of the one-dimensional splitting. In the case of constant advection, these methods and the traditional semi-Lagrangian ones are proven to be equivalent, but the conservative methods offer the possibility to add adequate filters in order to ensure the positivity. In the non constant advection case...
متن کاملA Hermite-Type Adaptive Semi-Lagrangian Scheme
Adaptive semi-Lagrangian schemes for solving the Vlasov equation in the phase space have recently been developed. They include wavelet techniques (Gutnic et al., 2004; Gutnic et al., 2005), the moving mesh method (Sonnendrücker et al., 2004), and hierarchical finite element decomposition (Campos Pinto and Mehrenberger, 2004; Campos Pinto and Mehrenberger, 2005). One main advantage of the latter...
متن کاملA Conservative Semi-Lagrangian Discontinuous Galerkin Scheme on the Cubed Sphere
The discontinuous Galerkin (DG) methods designed for hyperbolic problems arising from a wide range of applications are known to enjoy many computational advantages. DG methods coupled with strong-stabilitypreserving explicitRunge–Kutta discontinuousGalerkin (RKDG) timediscretizations provide a robust numerical approach suitable for geoscience applications including atmosphericmodeling.However, ...
متن کاملA conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid
A conservativemulti-tracer transport algorithmon the cubed-sphere based on the semi-Lagrangian approach (CSLAM) has been developed. The scheme relies on backward trajectories and the resulting upstream cells (polygons) are approximated with great-circle arcs. Biquadratic polynomial functions are used for approximating the density distribution in the cubed-sphere grid cells. The upstream surface...
متن کاملA Conservative Semi - Lagrangian Discontinuous Galerkin Scheme 1 on the Cubed - Sphere
6 The discontinuous Galerkin (DG) methods designed for hyperbolic problems arising from a 7 wide range of applications are known to enjoy many computational advantages. DG methods 8 coupled with strong-stability preserving explicit Runge-Kutta time discretizations (RKDG) 9 provide a robust numerical approach suitable for geoscience applications including atmo10 spheric modeling. However, a majo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Weather Review
سال: 2002
ISSN: 0027-0644,1520-0493
DOI: 10.1175/1520-0493(2002)130<0423:acqmsl>2.0.co;2